11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

3B2v7.51¢ 3 Prod.Type: com
GML4.3.1 IS : 307 pp.1—13(col.fig.:NIL)

ED:KCT

PAGN: ushamani SCAN: Mallik

ARTICLE IN PRESS

PERGAMON

Information Systems O (NNEN) NNE-RER

www.elsevier.com/locate/infosys

Using UML Action Semantics for model execution and

transformation

PAe

Gerson Sunyé*, Alain Le Guennec, Jean-Marc Jézéquel

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France

Abstract

The Unified Modelling Language (UML) lacks precise and formal foundations and semantics for several modeling
constructs, such as transition guards or method bodies. These semantic discrepancies and loopholes prevent
executability, making early testing and validation out of reach of UML tools. Furthermore, the semantic gap from
high-level UML concepts to low-level programming constructs found in traditional object-oriented language prevents

the development of efficient code generators.

The recent Action Semantics (AS) proposal tackles these problems by extending the UML with yet another formalism
for describing behavior, but with a strong emphasis on dynamic semantics. This formalism provides both, a metamodel
integrated into the UML metamodel, and a model of execution for these statements. As a future OMG standard, the AS
eases the move to tool interoperability, and allows for executable modeling and simulation.

We explore in this paper a specificity of the AS: its applicability to the UML metamodel, itself a UML model. We
show how this approach paves the way for powerful metaprogramming for model transformation. Furthermore, the
overhead for designers is minimal, as mappings from usual object-oriented languages to the AS will be standardized.

© 2002 Published by Elsevier Science Ltd.

Keywords: UML; Action Semantics

1. Introduction

The Unified Modeling Language (UML) pro-
vides many diagrams offering powerful abstrac-
tions for modeling systems while preserving an
adequate separation of concerns. For instance,
state charts, sequence diagrams or collaboration
diagrams expose different aspects of the same
behavior. But the UML currently lacks some

*Recommended by M W

*Corresponding author.

E-mail addresses: gerson.sunye@free.fr (G. Sunyé),
aleguen@free.fr (A. Le Guennec), jezequel@irisa.fr (J.-M.
Jézéquel).

precise and formal foundation for several con-
structs such as transition guards or method bodies,
for which it resorts to semantic loopholes in the
form of uninterpreted expressions. It is then very
difficult to carry on key software quality related
best practices such as early simulation and
validation or test case generation starting from
standard UML models.

To cope with these issues, the Object Manage-
ment Group (OMG) issued a request for proposal
(RFP) for an Action Semantics (AS) for the UML
[1]. It aims at integrating a precise, software-
independent action specification into the UML. The
AS specification [2] is a response to this RFP. It
builds on the existing UML and extends its

0306-4379/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.

PIL:S0306-4379(02)00014-5

49

51

53

55

57

59

61

63

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

2 G. Sunyé et al. | Information Systems (0 (1ll1) 118100

meta-model with a large set of new constructs. It

also defines a model of execution and a semantics of

actions. Building on the insight we obtained by
contributing some of its precise semantic defini-
tion, we briefly present the AS in Section 2. Along
the lines of what already exists in the IUT-T
Specification and Description Language (SDL)
community [3], the integration of the AS into
UML should ease the move to tool interoper-
ability, and allow for executable modeling and
simulation, as well as full code or test case
generation.

But the interest of the AS does not end there.
Relying on the fact that the UML metamodel (i.e.
the model describing the UML) is itself a UML
model, we show in this article how the AS can be
used at the metamodel level to help the OO
designer carry on activities such as behavior-
preserving transformations [4], design pattern
application [5] and design level aspects weaving
[6]. Our intention is not to propose yet another
approach for model transformation, pattern ap-
plication or refactoring. What we claim here, is
that the AS may (and should) go beyond the
design level and be used as a metaprogramming
language to help the implementation of existing
approaches. Also, as we show in the following
sections, it has strengths at both levels: at the
model level (as a design level language) and at the
metamodel level (as a metamodel level program-
ming language).

In all these design level activities, we can
distinguish two steps: (1) the identification of the
need to apply a given transformation on a UML
model; and (2) the actual transformation of that
model. Our intention is not to usurp the role of the
designers in deciding what to do in step 1, but to
provide them with tools to help automate the
second step, which is usually very tedious and
error prone. Further, when carried out in an ad
hoc manner, it is very difficult to keep track of the
what, why and how of the transformation, thus
leading to traceability problems and a lack of
reusability of the design micro-process. This can be
seen in maintenance, when one has to propagate
changes from the problem domain down to the
detailed design by “‘re-playing’ design decisions on
the modified part of a model. Automation could

also be very worthwhile in the context of product
lines, when the same (or at least very similar)
design decisions are to be applied on a family of
analysis models (e.g. the addition of a persistence
layer on many MIS applications).

Because the next OO designer cannot be
expected to write complex meta-programs from
scratch, in order to elaborate his design, he must
be provided with pre-canned transformations
(triggered through a menu), as well as ways of
customizing and combining existing transforma-
tions to build new ones. The main interest of using
the UML/AS at the metamodel level for expres-
sing these transformations is that we can use
classical OO principles to structure them into
reusable transformation components (RTC): this is
the open—closed principle [7] applied at the
metamodel level. Furthermore, since the AS is
fully integrated in the UML metamodel, it can be
combined with rules written in the Object Con-
straint Language (OCL) [8], in order to verify
whether a transformation (or a set of transforma-
tions) may be applied to a given context.

The rest of the paper is structured as follows.
The AS proposal is introduced in Section 2.
Section 3 shows the interest of using the AS at
the metamodel level for specifying and program-
ming model transformations in several contexts. In
Section 4 we discuss related work, and we
conclude on the perspectives open by our ap-
proach.

2. Executable modeling with UML

2.1. The bare-bone UML is incomplete and
imprecise

The UML is based on a four-layer architecture,
each layer being an instance of its upper layer, the
last one being an instance of itself. The first layer
holds the living entities when the code generated
from the model is executed, i.e. running objects,
with their attribute values and links to other
objects. The second layer is the modeling layer. It
represents the model as the designer conceives it.
This is the place where classes, associations, state
machines, etc., are defined. The running objects

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

G. Sunyé et al. | Information Systems O (1ll1) 118100 3

are instances of the classes defined at this level.
The third layer, the metamodel level, describes the
UML syntax in a metamodeling language (which
happens to be a subset of UML). This layer
specifies what a syntactically correct model is.
Finally, the fourth layer is the meta-metamodel
level, i.e. the definition of the metamodeling
language syntax, thus the syntax of the subset of
UML used as a metamodeling language. UML
creators chose a four-layer architecture because it
provides a basis for aligning the UML with
other standards based on a similar infrastructure,
such as the widely used meta-object facility
(MOF).

Although there is no strict one-to-one mapping
between all the MOF meta-metamodel elements
and the UML metamodel elements, the two
models are interoperable: the UML core package
metamodel and the MOF are structurally quite
similar. This conception implies the UML meta-
model (a set of class diagrams) is itself a UML
model.

A UML model is said to be syntactically correct
if the set of its views merge into a consistent
instance of the UML metamodel. The consistency
of this instance is ensured via the metamodel
structure (i.e. multiplicities on association ends)
and a set of well-formedness rules (WFR),
expressed in OCL, which are logical constraints
on the elements in a model. Examples of WFRs
are: there should not be any inheritance cycle or a
FinalState may not have any outgoing transitions.

But apart from those syntactic checks regarding
the structure of models, UML users suffer from
the lack of formal foundations for the important
behavioral aspects, leading to some incomplete-
ness and opening the door to inconsistencies in
UML models. This is true, for instance, in state
diagrams, where the specification of a guard on a
transition is realized by a BooleanExpression,
which is basically a string with no semantics.
Thus, the interpretation is left to the modeling
tool, jeopardizing interoperability. But more an-
noying is the fact that models are not executable,
because they are incompletely specified in the
UML. This makes it impossible to verify and test
early in the development process. Such activities
are key to assuring software quality.

2.2. The interest of an AS for UML

The Action Semantics proposal aims at provid-
ing modelers with a complete, software-indepen-
dent specification for actions in their models. The
goal is to make UML modeling executable
modeling [1], i.e. to allow designers to test and
verify early and to generate 100% of the code if
desired. It builds on the foundations of existing
industrial practices such as SDL, Kennedy Carter
[9] or BridgePoint [10] action languages.' But
contrary to its predecessors, it is intended that the
AS become an OMG standard, and a common
base for all the existing and to-come action
languages (mappings from existing languages to
AS are proposed).

Traditional modeling methods which do not
have support for any action language have focused
on separating analysis and design, i.e. the what the
system has to do and the how that will be achieved.
Whilst this separation clearly has some benefits,
such as allowing the designer to focus on system
requirements without spreading himself/herself
too thinly with implementation details, or allowing
the reuse of the same analysis model for different
implementations, it also has numerous drawbacks.
The main one is that this distinction is a difficult
one to make in practice: the boundaries are vague;
there are no criteria for deciding what is analysis,
and what is not. Rejecting some aspects from
analysis makes it incomplete and imprecise; trying
to complete it often leads to the introduction of
some how issues for describing the most complex
behaviors.

As described above, the complete UML speci-
fication of a model relies on the use of unin-
terpreted entities, with no well-defined and
accepted common formalism and semantics. This
may be, for example, guards on transitions
specified with the Object Constraint Language
(OCL), actions in states specified in Java or C++.

In the worst case—that is for most of the
modeling tools—these statements are simply in-
serted at the right place into the code skeleton. The
semantics of execution is then given by the

' All the major vendors providing an action language are in
the list of submitters.

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

4 G. Sunyé et al. | Information Systems O (1ll1) 118100

specification of the programming language. Un-
fortunately, this often implies an over-specification
of the problem (for example, in Java, a sequential
execution of the statements of a method is
supposed), verification and testing are feasible
only when the code is available, usually far too late
in the development process. Moreover, the de-
signer must have some knowledge of the way the
code is generated for the whole model in order to
have a good understanding of the implications of
her inserted code (for instance, if you are using the
C++ code generator of a UML tool, a knowledge
of the way the tool generates code for associations
is required in order to use such code in your own
program).

At best, the modeling tool has its own action
language and then the model may be executed and
simulated in the early development phases, but
with the drawbacks of no standardization, no
interoperability, and two formalisms for the
modeler to learn (the UML and the action
language).

2.3. The AS proposal submitted to the OMG

The AS proposal is based upon three abstrac-
tions:

® A metamodel: 1t extends the current metamodel.
The AS is integrated smoothly in the current
metamodel and allows for a precise syntax of
actions by replacing all the previously unin-
terpreted items. The uninterpreted items are
viewed as a surface language for the abstract
syntax tree of actions (see Fig. 1).

® An execution model: 1t is a UML model. It
allows the changes to an entity over time to be
modeled. Each change to any mutable entity
yields a new snapshot, and the sequence of
snapshots constitutes a history for the entity.
This execution model is used to define the
semantics of action execution.

® Semantics: The execution of an Action is
precisely defined with a life cycle which
unambiguously states the effect of executing
the action on the current instance of the
execution model (i.e. it computes the next
snapshot in history for the entity).

2.4. Surface language

The AS proposal for the UML does not enforce
any notation (i.e. surface language) for the specifi-
cation of actions. This is intentional, as the goal of
the AS is certainly not to define a new notation, or
to force the use of a particular existing one. The AS
was, however, conceived to allow an easy mapping
of classical languages such as Java, C+ + or SDL.?
Thus, designers can keep their favorite language
without having to learn a new one.

3. Metaprogramming with the Action Semantics

An interesting aspect of UML is that its syntax
is represented (or metamodeled) by itself (as a class
diagram, actually). Thus, when using a reflexive
environment (where the UML syntax is effectively
represented by a UML model), the AS can be used
to manipulate UML elements, i.e. transform models.

In the following sections, we present three
different uses for this approach: implementing
refactorings, applying design patterns and weaving
design aspects.

3.1. Design refactorings

The activity of software design is not limited to
the creation of new applications from scratch.
Very often software designers start from an
existing application and have to modify its
behavior and functionality. In recent years, it has
been widely acknowledged as a good practice to
divide this evolution into two distinct steps:

(1) Without introducing any new behavior on the
conceptual level, re-structure the software
design to improve quality factors such as
maintainability, efficiency, etc.

(2) Taking advantage of this “better” design,
modify the software behavior.

This first step has been called refactoring [4], and
is now seen as an essential activity during software
development and maintenance. By definition,
refactorings should be behavior-preserving

2Some of these mappings are illustrated in the AS specifica-
tion document [11].

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

G. Sunyé et al. | Information Systems (0 (11l1) 111100 5
Method | 0-1 0.1 procedure |1 0.x Expression
>
+body language:String
body:Strin
0.1 y 9
+action
Action

Fig. 1. Action Semantics immersion into the UML.

transformations of an application. But one of the
problems faced by designers is that it is often hard
to measure the actual impact of modifications on
the various design views, as well as on the
implementation code.

This is particularly true for the UML, with its
various structural and dynamic views, which can
share many modeling elements. For instance, when
a method is removed from a class diagram, it is
often difficult to establish, at first glance, what is
the impact on sequence and activities diagrams,
collaborations, statecharts, OCL constraints, etc.

Still, the UML also has a primordial advantage
in comparison with other design languages: its
abstract syntax is defined by a metamodel, where
the integration of the different views is given
meaning. Therefore, the metamodel can be used to
control the impact of a modification, which is
essential when it should preserve the initial
behavior an application.

The AS opens important perspectives for design
refactorings. To begin with, if the mapping
between object-oriented languages and the AS
syntax is possible, then we will be able propose
language-independent refactorings. Moreover,
since it proposes an abstract syntax tree modeling
the contents of methods, we are able to analyze the
contents of methods and consequently, to fully
express refactorings pre and postconditions. We
can ecasily determine, for instance, in which
methods a given attribute is referenced. Finally,
and maybe the most important perspective, the
UML will be able to fully represent an application
in one single abstract instance of the same
modeling constructs. This is an essential issue,
since refactorings only make sense when restruc-
turing an existing application.

Also, the AS represents a real gain for refactor-
ing implementation, not merely because it can
directly manipulate UML constructs, but also
because of the possibility of combining it with
OCL rules to write pre and postconditions. More
precisely, as refactorings must preserve the beha-
vior of the modified application, they cannot be
applied blindly: every refactoring ought to verify a
set of conditions before the transformation is
carried out.

Since the goal of this paper is not to present a
comprehensive list of possible refactorings (which
can be found in [12]), but to illustrate the use of the
AS for their implementation, only two refactorings
are presented below. The first one is a simple
transformation, used to move up an attribute
inside an hierarchy of classes. The second trans-
formation is noticeably more complex than the
first one: it moves an operation from a class to
another one. In this particular case, the code of the
concerned operation must be analyzed, to deter-
mine whether the transformation can be triggered.

Each refactoring is defined by a triad of:
precondition, actions, and postconditions. The
actions describe how the transformation accom-
plishes its intent while the pre- and postconditions
are used to verify whether the transformation can
be applied and if its application reaches its goals.
Since our approach concerns the UML, we
naturally use the OCL to specify pre- and
postconditions. Also since the AS does not have
an official surface language, we have adopted an
“OCL-like” version of it in our examples.

The transformations presented here manipulate
instances of concepts from the UML and the AS
metamodels and require some precise knowledge
of these metamodels.

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

6 G. Sunyé et al. | Information Systems (0 (1ll1) 118100

3.1.1. Attribute generalization

The first transformation presented here is the
generalization of equivalent attributes. An attri-
bute belongs to a classifier, which is its owner, and
has siblings, the children of its owner. In addition
to the equivalence, which must be satisfied for
exactly one attribute of each sibling, two other
preconditions should be satisfied. First, private
attributes cannot be moved, since they are not
visible outside the scope of the owner and are not
inherited. Second, the owner must have exactly
one parent. The attribute generalization refactor-
ing is expressed as follows:

: Attribute Generalization

Attribute :: generalize
pre:
self . visibility < >#private and
self .owner.parent.size = 1 and
self .owner.parent.children—for All (aClass|
aClass.feature— exists (a| a.isBasicEquivalentTo(self)))

actions:
aList := self .owner.parent.children— collect (aClass|
aClass.feature)— select (a| a.isBasicEquivalentTo(self))
self .owner.parent.addFeature(self.copy)
aList—forAll (each|each.delete)
post:
self @pre.owner.parent.feature—exists(a|
a.isBasicEquivalent To(self))) and
not self @pre.owner.parent.children— forAll(aClass|
aClass.feature— exists (a| a.isBasicEquivalentTo(self)))

The specification can be explained as follows. The
preconditions ensure that the attribute is not
private, that the class owning the attribute has
exactly one superclass, and that for all siblings of
the class owning the attribute, there exists a feature
which is equivalent to that attribute. In the actions
part, the features of all subclasses are collected
(including the owner of the attribute) and the
equivalent ones are selected. Then, a copy of the
attribute is added to the superclass and all selected
features are deleted. The postconditions ensure
that for the superclass of the previous owner class
(self@pre.owner), there will exist a feature which is
equivalent to the concerned attribute, and that the
siblings of the previous owner class will not own
an equivalent feature.

An OCL expert might rightfully notice that the
operation children is defined neither in the OCL
documentation nor as an additional operation in
the UML metamodel. We have defined it symme-
trically to the parent operation, defined for
classifiers.

3.1.2. Move operation to classifier

This transformation moves an operation from a
source classifier to a target one and creates a
forwarder (see below) operation in the target. The
constraints required by this transformation are
rather complex. Initially, it implies the existence of
an association, possibly inherited, between both
classifiers. This association must be binary and its
association ends must be both navigable, instance
level and have a multiplicity of 1.

Although this transfer could be applied to any
operation, some other constraints were specified,
in order to keep it coherent. The body of the
concerned operation should not directly access
attributes and should only navigate through an
association to the target classifier. After the
transformation, the actions within the body of
the moved operation that used to refer to “self”
shall now refer to the source object (be it passed as
a first parameter or found by navigating the
association backward), and actions that used to
refer to the target recurring expression shall now
refer to “self”’ instead.

: Move Operation

Operation::moveTo(class: Classifier)
pre:
class .allOperations— select (each|each.matchesSignature(self)) —isEmpty/()

onEnds—
select (each:A ationFind|each.isNavigable = #true
and each.targetScope=4##ir ce and each.multiplicity. max = 1
and each. multiplicity .min = 1).association—
select (each: Association|each.connection—size = 2).allConnections—
select (each: AssociationEnd|each.isNavigable = #true
and each.targetScope=#instance and each.multiplicity. max = 1
and each. multiplicity .min = 1 and each.type = class) in
opositeAEs—size() = 1 and
self . procedurc.allNested Actions()—
forAll(a| a.oclIsKindOf(AttributeAction)
implies (a.oclAsType(AttributeAction).attribute. visibility = #public))
actions:
source = sell .owner
self .setOwner(class)
Es—first . association .connection—excluding(oposite A Es)
INested Actions()— select (a| a.oclIsKind Of(ReadSelfAction))—
forAll(rsa| 1l := ReadLinkObjectAction.new;
rl.setResult(rsa. result); rl.setObject(rsa.object);
1l .setEnd(opositeAEs—first);rsa. delete)
ca = callAction.new: ca.setOperation(self)
newOp := Operation.new;newOp.setOwner(source)
newOp.setSignature(self.signature . copy)inewOp.add Action(ca)
post:
let: source = self@pre.owner in
let. newOp = source.allOperations—
intersection (source.allOperations@pre)—first in
newOp.matchesSignature(sell)
newOp.procedure.action.forwardsTo(self)
self .procedure = self.procedure@pre
self . allNested Actions()— collect (a : Action | a.outputPin)—
forAll (o:OutPutPin|o.action@pre.oclIsKind Of(ReadSelfAction)
implies (o.action.oclIsKindOf(ReadLinkObjectAction) and
o.action.oclAsType(ReadLinkObject Action).cnd.type = source)

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

G. Sunyé et al. | Information Systems (0 (1ll1) 118100 7

The preconditions first ensure that the set of all
operations owned by the target classifier does not
contain any operation having the same signature
as the concerned operation. Then, a set of opposite
association ends is built in three steps: we select the
association ends that are navigable, instance level
and have a multiplicity of exactly one and create a
list of associations; among these associations, we
select the binary ones and create a list with all
association ends connected to these associations;
among these association ends, we select those that
are also navigable, instance level, having a multi-
plicity of one and whose connected classifier is the
target class. The size of the resulting set should
be one (note that OCL, set operations like
collect, select, etc., always return sets of elements,
since nested sets are not accepted). Finally,
for all actions contained by the operation, if
the kind of an action is ‘attribute action’ (there
exists read and write attribute actions), then the
visibility of the read or written attribute should be
public.

In the actions part, we first store the class
owning the operation, change the owner of the last
and find the association end used to reference the
source class. Then, in a set composed of all actions
contained by the operation, we seclect the refer-
ences to ‘self’, the read self actions, and replace
these actions with links to the source classifier, the
read link object actions. The replacement is
completed when the references to result and object
are set in the new action, and the old action is
deleted. Finally, a call action is created, and the
called action is set to the moved operation. A new
operation is created, it is added to the source class,
its signature is set and its only action is a call
action.

In the postconditions part, we first make an
intersection between the set of operations that
the source class owns and the set of operations
it owned before the transformation. This intersec-
tion is the new operation. The new operation
should have the same signature as the moved
operation, and its only action should be a
forwarder. The condition then collects a list of
output pins of all its nested actions and verifies
that, for all actions linked to these output pins,
if the action was a reference to self, then the

actual action should be a read link object action,
whose association end is connected to the source
class.

A forwarder method is a method that has
one action only, a call to another operation.
Since the body of a method is set of AS actions,
this set must contain exactly one action, whose
kind is Call Action. This operation is defined as

follows:

: Forwards To
Action::forwardsTo(op:Operation): Boolean
post:
result = let actions = self .allNestedActions in

actions—size = 1 and
actions— first .oclIsKind Of(CallAction) and
actions— first .operation = op

3.2. Design patterns

Another interesting use for AS is the application
of the solution proposed by a Design Pattern, i.e.
the specification of the proposed terminology and
structure of a pattern in a particular context
(called instance or occurrence of a pattern). In
other words, we foresee the application of a
pattern as a sequence of transformation steps that
are applied to an initial situation in order to reach
a final situation, an explicit occurrence of a
pattern.

This approach is not, and does not intend to be,
universal since only a few patterns mention an
existing situation to which the pattern could be
applied (see [13] for further discussion on this
topic). In fact, our intent is to provide designers
with metaprogramming facilities, so they are able
to define (and apply) their own variants of known
patterns. The limits of this approach, such as
pattern and trade-offs representation in UML, are
discussed in [14].

As an example of design pattern application, we
present below a transformation function that
applies the Proxy pattern. The main goal of this
pattern is to provide a placeholder for another
object, called Real Subject, to control access to it.
It is used, for instance, to defer the cost of
creation of an expensive object until it is actually
needed:

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

8 G. Sunyé et al. | Information Systems (0 (1ll1) 111100

Class :: addProxy
pre:
let classnames = self . package. allClasses — collect (each : Class | each.name) in
classnames—excludes(self.name+’Proxy’) and
classnames—excludes(’Real’ +self.name)
actions:
str := sclf .name
tr.concat(’Proxy’)
re.addClass(str, self .allSuperTypes(),{ }—including(self))
addClass(’Real’.concat(str).{ }—including(super),{})
ass : ationTo(’realSubject’ real)
self .operations—forAll(op : Operation | op.moveTo(real))

This function uses three other functions, that
actually happen to be refactorings. The first
function, addClass(), adds a new class to a
package, and inserts it between a set of super-
classes and a set of subclasses. The second,
addAssociationTo(), creates an association be-
tween two classes. The third, moveTo(), presented
in the previous section, moves a method to another
class and creates a forwarder method in the
original class.

This transformation should be applied to a class
playing the role of real subject.® Its application
proceeds as follows:

(1) Add the ‘Proxy’ suffix to the class name.

(2) Insert a super-class between the class and its
super-classes.

(3) Create the real subject class.

(4) Add an association between the real subject
and the proxy.

(5) Move every method owned by the proxy class
to the real subject and create a forwarder
method to it (move methods).

As we have explained before, this is only one of
the many implementation variants of the Proxy
pattern. This implementation is not complete,
since it does not create the load() method, which
should create the real subject when it is requested.
However, it can help designers to avoid some
implementation burden, particularly when creat-
ing forwarder methods.

3.3. Aspect weaving

Finally, we would like to show how AS can
support the task of developing applications that

3Patterns are defined in terms of roles, which are played by
one or more classes in its occurrences.

contain multiple aspects. Aspects (or concerns)
[15,16] refer to non-functional requirements that
have a global impact on the implementation. The
approach used in dealing with this is to separate
these aspects from the conceptual design, and to
introduce them into the system only during the
final coding phase. In many cases, the merging of
aspects is handled by an automated tool. In our
example, we attempt to show how aspects can be
woven at the design level through model transfor-
mation [17], using the AS to write the transforma-
tion rules.

The class diagram in Fig. 2 illustrates a model of
a bank personal-finances information-manage-
ment system. In the original system, the account-
ing information was stored in a relational database
and each class marked with the “persistent”
stereotype can be related to a given table in the
database.

The aim of this re-engineering project is to
develop a distributed object-oriented version of the
user front-end to support new online access for its
customers. One of the non-functional require-
ments is to map these “‘persistent” objects to the
instance data stored in the relational database.

The task involves writing a set of proxy classes
that hide the database dependency, as well as the
database query commands. An example of the
required transformation is illustrated by the model
in Fig. 3. In this reference template, the instance
variable access methods are generated automati-
cally and database specific instructions are em-
bedded to perform the necessary data access.

Since the re-engineering is carried out in an
incremental manner, there is a problem with
concurrent access to the database during write-
back commits. The new application must coop-
erate with older software to ensure data coherence.
A provisional solution is to implement a single-
ended data coherence check on the new software.
This uses a timestamp to test if data has been
modified by other external programs. If data has
been modified since the last access, all commit
operations will be rolled back, thus preserving
data coherence without having to modify old
software not involved in this incremental rewrite.
Fig. 4 shows the template transformation required.
It adds a flag to cache the timestamp and access

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

G. Sunyé et al. | Information Systems O (1il1) 118100 9
<<persistent>> <<persistent>>
Customer Address
L1 1

first_name: String
last_name: String

+permanent_residence

streetl: String
stree2: String

ss_no: String Lok 0.1 postcode: String
+correspondence town_city: String
country: String
<<persistent>>
Account
) 1
number: String —debit
AN 1.
<<persistent>>
Check
Savings External Checking check_no: String
1 0.., |amount: Float
interest_rate: Float bank_ref: String gt +outstanding

Fig. 2. Information management system for personal finance.

<<persistent>>

PState_Check

Incarnation_Check

Check
check_no: String
amount: Float

=
=

+pstate

get_check_no(): String 1
set_check_no(a_no: String) — set_check_no(a_no: String)
get_amount(): Float

set_amount(a_amount: Float)

get_check_no(): String

=

get_amount(): Float
set_amount(a_amount: Float)

Fig. 3. Persistence proxies and access methods.

methods will be wrapped by timestamp-checking
code.

The metaprogram needed to generate the proxy
classes of Figs.3 and 4 is composed of several
operations. The first one is defined in the context
of a Namespace (i.e. the container of UML
modeling elements). It selects all classes that are
stereotyped ‘persistent’ and applies the implement-
Persistent() transformation:

Namespace:: implement PersistentClasses
actions:
self . allClasses — select (each : Class| each.stereotype—notEmpty)—
select (each : Class | each.stereotype— first .name = ‘persistent’)—
forAll (each : Class | each.implementPersistent)

The implement Persistent() operation is defined in
the context of a Class. This operation will first
create two classes, state and incarnation, and then
creates, in these classes, the access methods to its
own stereotyped attributes. This operation is

defined as follows:

: implementPersistent

pstate := self .package.addClass(‘PState ’ . concat (pclass.name) ,{},{})
».addOperation(‘Load?) ; pstate.addOperation(‘Save’)
self .add AssociationTo(pstate, 1, 1}
incarnation := self . package.addClass(’ Incarnation_’.concat(pclass.name) {},{})
pstate.addCompositeAssociation To(incarnation, 1, 1)
= sell . allAttributes — select (a : Attribute| a.stereotype—notEmpty)
attrs— select (a : Attribute | a.stereotype— first .name = ’getset’)—
forAll(a : Attribute |
pstate.createSetter’To(a); pstate.createGetter’lo(a)
incarnation.createSetterTo(a); incarnation.createGetterTo(a))
attrs—select (a : Attribute | a.stereotype— first .name = ’get’)—
forAll(a : Attribute |
incarnation. createGetterTo(a); pstate.createGetterTo(a))
attrs—select (a : Attribute | a.stereotype— first .name = ’set’)—
forAll(a : Attribute |
pstate.createSetterTo(a); incarnation.createSetterTo(a))

The creation of the access methods is implemented
by the createSetterTo() and createGetterTo()
operations. They are both defined in the Class
context and implement a similar operation. They
take an Attribute as parameter and create a
Method for setting or getting its value. These

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

10 G. Sunyé et al. | Information Systems (0 (1ll1) 111100

<<persistent>>

PState_Check

Incarnation_Check

Check

flag_incarnation_cheque: String

check_no: String 1 1

amount: Float

get_check_no(): String
+pstate | set_check_no(a_no: String)
get_amount(): Float
set_amount(a_amount: Float)

get_check_no(): String

@ — set_check_no(a_no: String)
get_amount(): Float
set_amount(a_amount: Float)

[
=

Fig. 4. Timestamp cache flag for concurrent data coherence.

operations use two other operations, create-
Method() and createParameter(), which are
explained above:

Class :: createSetterTo(att : Attribute)
actions:
newMethod := self.createMethod(’set_’.concat(att.name))

newMethod.createParameter(’a_’.concat(attrib_name), att.type, >in’)

Class :: createGetterTo(att : Attribute)

actions:
newMethod := self.createMethod(’ get_’.concat(att.name))
newMethod.createParameter(’a_’.concat(attrib_name), att.type, >out’)

The createMethod() operation is also defined in
the Class context. Its role is to create a new
Method from a string and to add it to the Class:

Class :: createMethod(str : String)
actions:
newMethod := Method.new
newMethod.name := str
self .addMethod (newMethod)
result := newMethod

Finally, the createParameter() operation creates a
new parameter and adds it to a Method, which is
the context of this operation:

Method::createParameter

(name : String, type : Class, direction : String)

actions:
newParameter := Parameter.new
newParameter.name := name
newParameter.set Type(type)
newParameter.setDirection(direction)
self .addParameter(newParameter)
result := newParameter

The attractiveness of this example is not immedi-
ately evident. Let us consider a different imple-
mentation for the persistent proxy of Fig. 3. In
the case where there are composite persistent

objects, it is possible to use a single persistent
state proxy for a composite object and all its
components (see Fig.5). Through the use of
metaprogramming, it is now possible to consider
these different implementation aspects indepen-
dently from the concurrency implementation. It
enables the designer to conceptualize the modifica-
tions in a manageable manner. Making changes to
a model by hand as a result of a change in an
implementation decision is not a viable alternative
as it is laborious and prone to error.

Therefore, it can be seen that metaprogramming
using the AS can facilitate implementation changes
at a higher abstraction level. It also leverages the
execution machine for the AS by using it to
perform the model transformation.

4. Related work

Transformations of a UML model can be
classified into two types according to the objective
in applying them: model (or schema) manipulation
and code generation. In the former, the syntax is
preserved, i.e. the source and the target models are
represented by the same language. This is the
approach used, for instance, to add particular
details to UML models. In the latter, the syntax of
the target model is a programming language.

While code generation generally concerns the
whole UML model, model manipulations are
often smaller and concern fewer modeling ecle-
ments. In both approaches, a transformation can
be divided into two different parts: the selection (or
filter) of the elements concerned and the actions
performing the transformation itself. A comple-
mentary part can be added to the later: the
validation of the target model.

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

<<persistent>>
Checking

=

0..* |+outstanding

<<persistent>>
Check

11

G. Sunyé et al. | Information Systems O (1il1) 118100 11

1

PState_Checking

+pstate

+pstate

get_number():String
set_number(a_number:String)
get_check_no():Strring
set_check_no(a_no:String)
get_amount():Float
set_amount(a_amt:Float)

Incarnation_Check

1 1

D

+incarnation_check

get_check_no():String
set_check_no(a_no:String)
get_amount():Float
set_amount(a_amount:Float)

1

Incarnation_Checking

*+incarnation_checking | 9€t_number():String

check_no:String
amount:Float

set_number(a_number:String)

Fig. 5. Implementation template for shared proxy.

Due to the current lack of semantics when
specifying behavior in UML, commercial UML
tools often propose metaprogramming languages
for both model manipulation and code generation,
allowing designers to specify their own semantics
using UML-specific modeling elements, such as
Stereotypes or Tagged values. This is the case, for
instance, of Object Domain and Softeam’s Objec-
teering, which use Python and J, a “Java-like”
language [18], respectively. This is also the case of
Rational Rose and of Rhapsody from Ilogix,
which use Visual Basic.

The use of well-known object-oriented lan-
guages for model manipulation has at least one
clear advantage; they discharge designers from
learning yet another tool-dedicated language.
However, the choice of such a language may also
be a weakness: these languages are not as well
adapted to code generation as other techniques,
such as template-based code generation [19], and
do not offer model-specific facilities, such as
navigation or pattern recognition for filtering
model elements.

The emergence of the XML [20] and its related
standards brought an alternative approach to
model transformation. Indeed, one may use the
XMI [21] rules to represent a UML model in the
XML format and use a XLST engine to transform
it into another UML model or its source code in
different languages. However, this approach is
more attractive for code generation than for model
transformation, since it performs only purely
syntactic transformation and does not take into
account the constraints of the UML static

semantics. Moreover, this approach is difficult
to use when a model must be significantly
modified.

The AS, used as a metaprogramming language,
has the same weaknesses as the languages pro-
posed by commercial tools: it is not conceived for
code generation or for selecting model elements.
The use of the OCL to filter model elements (and
not only for specifying pre and postconditions),
may be an interesting alternative. In this case,
OCL would play the same role as XPath in the
XSLT context. Concerning the inadequacy of the
AS for code generation, this is not actually a
problem, since a tool that implements the AS in
the design level does not need to “‘generate” the
code, it only adds a concrete syntax to an abstract
graph.

5. Conclusion

The AS extends the UML with new elements to
precisely specify behaviors. Its advantages over ad
hoc notations are its well-founded semantics, and
its level of abstraction that nicely fits between
UML high level specifications and low level
implementation concepts.

Moreover, since the UML metamodel itself is a
UML model, the AS can be used as a powerful
mechanism for modeling and executing design
time model transformations. This particularity
opens new perspectives for designers thanks
to its perfect integration with the UML: all the
features of the UML, such as constraints (pre or

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

IS : 307
ARTICLE IN PRESS

12 G. Sunyé et al. | Information Systems (0 (1ll1) 111100

postconditions, invariants), refinements or traces
can be applied within the AS.

The use of the AS may bring some possible
changes to the traditional software development
process and play a major role in realizing the new
OMG vision of a Model Driven Architecture
(MDA). The AS is an important step towards the
use of UML in an effective development environ-
ment, since it offers the possibility of animating
early design models and evolving or refining them
until their implementation. The development
approach we propose here starts with an early
design model, created by the designers from an
analysis model. This model is completely indepen-
dent from the implementation environment, it
assumes an “‘Ideal World”, where the processing
power and the memory are infinite, there are no
system crashes, no transmission errors, no data-
base conflicts, etc. Since this model contains AS
statements, it can be animated by the AS
machine and validated. Once this early
validation is completed, the designers can add
some platform-specific aspects to the design model
(database access, distribution), apply design pat-
terns and restructure the model using design
refactorings.

We can then foresee a new dimension for
the distribution of work in development teams,
with a few metadesigners being responsible for
translating the mechanistic part of a company’s
design know-how into Reusable Transformation
Components, while most other designers concen-
trate on making intelligent design decisions and
automatically applying the corresponding trans-
formations.

An implementation conforming to the current
version of the AS specification is in development in
UMLAUT,* a freely available UML modeling
tool. The complete integration of the AS and the
UML in UMLAUT provides an excellent research
platform for the implementation of design refac-
torings.

“http://www.irisa.fr/UMLAUT/

References

[1] Object Management Group, Action semantics for the uml
rfp, ad/98-11-01, 1998.

[2] The Action Semantics Consortium, Action semantics for
the uml, omg ad/2001-03-01, March 2001.

[3] IUT-T, Recommendation z.109 (11/99)—SDL combined
with UML, 1999.

[4] W.F. Opdyke, Refactoring object-oriented frameworks,
Ph.D. Thesis, University of Illinois, Urbana-Champaign,
Technical Report UTUCDCS-R-92-1759, 1992.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Professional Computing Series, Addison-Wesley, Reading,
MA, 1995.

[6] R. Keller, R. Schauer, Design components: Towards
software composition at the design level, in: Proceedings
of the 20th International Conference on Software En-
gineering, IEEE Computer Society Press, Silver Spring,
MD, April 1998, pp. 302-311.

[7] B. Meyer, Object-Oriented Software Construction, Pre-
ntice-Hall, Englewood Cliffs, NJ, 1988.

[8] A. Kleppe, J. Warmer, S. Cook, Informal formality? the
object constraint language and its application in the UML
metamodel, in: J. Bézivin, P.A. Muller (Eds.), The Unified
Modeling Language, UML’98—Beyond the Notation,
First International Workshop, Mulhouse, France, June
1998, pp. 127-136.

[9] Kennedy-Carter, Executable UML (xuml), http://www.
kc.com/html/xuml.html.

[10] Projtech-Technology, Executable
projtech.com/pubs/xuml.html.

[11] The Action Semantics Consortium, Updated joint initial
submission against the action semantics for uml rfp, 2000.

[12] G. Sunyé, D. Pollet, Y. LeTraon, J.-M. Jézéquel,
Refactoring UML models, in: Proceedings of UML 2001,
Lecture Notes in Computer Science, Springer, Berlin, 2001.

[13] M. Cinnéide, P. Nixon, A methodology for the automated
introduction of design patterns, in: International Con-
ference on Software Maintenance, Oxford, 1999.

[14] G. Sunyé, A. Le Guennec, J.-M. Jézéquel, Design pattern
application in UML, in: E. Bertino (Ed.), ECOOP’2000
Proceedings, Lecture Notes in Computer Science, Vol.
1850, Springer, Berlin, June 2000, pp. 44-62.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, J. Irwin, Aspect-oriented program-
ming, in: M. Aksit, S. Matsuoka (Eds.), ECOOP 97—
Object-Oriented Programming 11th European Con-
ference, Jyviskyld, Finland, Lecture Notes in Computer
Science, Vol. 1241, Springer, New York, June 1997, pp.
220-242.

[16] P. Tarr, H. Ossher, W. Harrison, N degrees of separation:
Multi-dimensional separation of concerns, in: ICSE’99,
Los Angeles, CA, 1999.

[17] W.M. Ho, F. Pennaneac’h, N. Plouzeau, Umlaut: A
framework for weaving UML-based aspect-oriented de-
signs, in: Technology of Object-Oriented Languages and

UML, http://www.

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

&5

87

89

91

93

95

http://www.kc.com/html/xuml.html
http://www.kc.com/html/xuml.html
http://www.projtech.com/pubs/xuml.html
http://www.projtech.com/pubs/xuml.html
http://www.irisa.fr/UMLAUT/

IS : 307
ARTICLE IN PRESS

G. Sunyé et al. | Information Systems (0 (1ll1) 118100 13
Systems (TOOLS Europe), Vol. 33, IEEE Computer [20] T. Bray, J. Paoli, C. Sperberg-McQuee, Extensible Mark-
Society, June 2000, pp. 324-334. up Language (XML) 1.0—W3C recommendation,
[18] Softeam, UML Profiles and the J Language: Totally February 1998, http://www.w3.org/TR/1998/REC-xml-
control your application development using UML, http: 19980210.html.
//www.softeam.fr/us/pdf/uml_profiles.pdf, 1999. [21] OMG, OMG XML metadata interchange (XMI) specifi-
[19] S. Srinivasan, Advanced Perl Programming — Template- cation, version 1.0, June 2000, http://www.omg.org/.

Driven Code Generation, O’Reilly and Associates, Sebas-
tapol, CA, 1997 (Chapter 17).

11

13

http://www.softeam.fr/us/pdf/uml_profiles.pdf
http://www.softeam.fr/us/pdf/uml_profiles.pdf
http://www.softeam.fr/us/pdf/uml_profiles.pdf
http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.omg.org/

	Using UML Action Semantics for model execution and transformation
	Introduction
	Executable modeling with UML
	The bare-bone UML is incomplete and imprecise
	The interest of an AS for UML
	The AS proposal submitted to the OMG
	Surface language

	Metaprogramming with the Action Semantics
	Design refactorings
	Attribute generalization
	Move operation to classifier

	Design patterns
	Aspect weaving

	Related work
	Conclusion
	References

