
The Bosco Project
A JMI-Compliant Template-based Code Generator

Pascal André Gilles Ardourel Gerson Sunyé
LINA, University of Nantes

2, rue de la Houssinière – BP 92208
44322 Nantes Cedex 03 – FRANCE

[Pascal.Andre,Gilles.Ardourel,Gerson.Sunye]@lina.univ-nantes.fr

Abstract

Bosco is a code generation tool, which goal is
to accept any MOF model as parameter and follow
the evolution of OMG standards. It generates the
underlying model (also called repository) for any
modeling language expressed in MOF. In other words,
it reads XMI files and generates the corresponding
source code, in different object-oriented languages
(Java, Eiffel, Python, C++). In the case of Java, the
generated code implements the JMI specification. In
Bosco, any user can program add-ins at each level
using the visitor pattern and the template technology.

Keywords: Software Engineering, MOF, UML, JMI,
Templates, Model Transformation.

1 Introduction

Since its first version the UML – as well as other
related OMG standards such as the Meta Object Fa-
cility (MOF), the XML Metadata Exchange (XMI) or
the Object Constraint Language (OCL) – underwent
several versions, making it very difficult to a modeling
tool not only to be kept up to date, but also to manage
models expressed in different UML versions. The most
common solution to keep a tool up to date is to gener-
ate automatically the code used to represent models,
called the underlying model (or repository), which is
highly dependent from the UML specification. This is
the same approach as the one used by meta-tools [4]:
use the specification of a modeling language to gener-
ate its underlying model.

Concerning the UML, its specification (or at least
its syntax) is expressed by a model, also called meta-
model, which is represented in MOF [6] and proposed
as a XMI document [?]. The MOF is a subset of UML,

roughly its class diagram, while XMI is a XML docu-
ment, used to exchange models. However, MOF and
XMI are also frequently updated and the particularly
high levels of abstraction handled by this type of tool,
as well as the unusual merge of code and strings con-
taining code, have both deleterious effect on its main-
tainability. Furthermore, since the generated code
does not follow any standard, changing from a gener-
ation tool to another is almost impossible. Therefore,
generation tools face exactly the same difficulties as
UML tools, but on a lesser scale.

The generative approach is used for instance in Ar-
goUML [1], which uses a tool called NSUML [8] to gen-
erate its underlying model and which faces nowadays
an evolution dilemma. Since NSUML is not evolving
anymore, Argo is undergoing an important develop-
ment effort to move to another underlying model and
support the recent versions of the UML. The goal of
the Bosco project is to provide underlying models to
modeling tools. It attempts to solve the difficulties
delineated above thanks to three main properties.

1. The generated code respects a common specifica-
tion for metadata interfaces (JMI), meaning that
the tool that uses this code is not dependent from
Bosco.

2. Thanks to the use of templates (see § 3), the read-
ability of its implementation code is ameliorated.

3. As Bosco underlying model is itself generated,
Bosco is ready to deal with the evolution of stan-
dards.

The paper is organized as follows. After a short
presentation of Bosco in section 2, its architecture is
described and illustrated by an example in section 3.
Section 4 focus on the generated environment. We
compare Bosco to other approaches in section 5 before
concluding.

2 Scope

The Bosco project1 is a generic open source project
that focus on the internal representation of sofware
development models. Bosco parameters are XMI
files describing metamodels and meta-metamodels. It
currently works for MOF release 1.4 and UML re-
leases. Its entries are software development models
(e.g. UML models, ER models, ...). Bosco add-ins are
model driven functions: the user implements modeling
functions such that model checking, code generation,
documentation generation, model transformation (e.g.
from UML 1.5 to UML 2.0) and so on.

Bosco is standard compliant for inputs and outputs
parameters (OMG standards : MOF, UML, XMI).
Currently the generated code implements the JMI
specification [3]. Bosco handles the three higher levels
of the OMG standard [7] (infrastructure p. 31).

1. Meta-metamodel : Bosco is assumed to read MOF
specifications (M3) for building the metamodel
compilers. It currently accepts MOF 1.4.

2. Metamodel : Bosco reads metamodels (M2) for
building model compilers. The tool has been
tested with UML 1.4 and UML 1.5.

3. Model : Bosco loads M1 models to apply user-
defined operations such as model checking, code-
generation, testing, metric computations, etc.

The instance level is not taken into account since
no execution of UML models is provided.

3 Bosco Architecture

Bosco has a two part architecture, reflecting the two
conceptual levels it handles. The first part (Figure 1)
handles language specifications (or metamodels): it
reads XMI-MOF documents and generates their un-
derlying models. The second part (Figure 2) is the
generated environment: it reads and writes XMI docu-
ments that are compatible with the language specified
in the first part. In the current release, this part is im-
plemented (i.e. generated) in Java and is compatible
with the Java Metadata Interfaces (JMI).

3.1 Implementation

The specification-level part of Bosco is written in
Python [11] and consists of a MOF underlying model,

1http://bosco.tigris.org

a Sax-based XMI parser and a code generator. The
generator uses a template engine named Cheetah [9]
and is driven by template files, which merge source
code with basic control structures (#for, #if, etc.).
Thanks to this, the generation is highly configurable:
one can add new features to the generated code with-
out writing a single line of Python.

Our goal when implementing this part was to make
it as simple as possible: the input specifications are
supposed to be valid and the MOF underlying model
is minimal. However, the templates that will generate
a more robust parser and a full MOF underlying model
are under construction.

One may accurately wonder why this part of Bosco
was not implemented in Java, since its intent is to
generate Java code and some parts of it (e.g. the XMI
parser) could be shared between the two architectural
parts. Three main reasons motivate this choice.

The first one, and maybe the most important, is
that Cheetah uses Python objects as the context for
template expansions, allowing the template to access
its attributes and methods. Thus, all Python objects
are potentially accessible, while in the available Java
template engines, such as Velocity2 or WebMacro3,
only the values of a dictionary (filled before the expan-
sion) are accessible. This means that when a template
needs to access objects that are not in the dictionary,
the code calling that template has to be replaced.

The second reason is that lists, as well as list op-
erations4, are smoothly handled in Python. Since a
model can be seen as a succession of lists (e.g. a
package contains a list of classes, a class contains a
list of attributes and so forth), Python is particularly
adapted to handle models. For instance, when cre-
ating the string representing the parameter list of a
MOF class constructor, one must find a list of all its
instance-level single-valued attributes and then trans-
late this list into a string containing their type names
followed by their names, separated by commas. While
in Python this manipulation can be achieved by a se-
quence of 3 operations (filter, map, join) in a single
line of code, it would need several lines in Java.

The third and last reason is that we wanted the
specification level to be independent from both the
generated environment and its implementation lan-
guage, and a simple manner to accomplish this is to
use a different language.

2http://jakarta.apache.org/velocity/index.html
3http://www.webmacro.org
4map, filter and reduce

Figure 1 : architecture

3.2 Code Generation Example

In this section, the code generation process is illus-
trated by a small example. Bosco reads XMI-MOF
specifications and instantiates its own implementation
of the MOF underlying model. This first step is neces-
sary in order to translate the tree structure of a XML
document into a graph, which is more adapted to code
generation. Once a MOF model is instantiated, it is
used as the context for the templates.

XMI Element The element below comes from the
UML 1.5 specification. It describes the metaclass
Class, and its single attribute, isActive:

<Model:Class annotation="" isAbstract="false"

isLeaf="false" isRoot="false" isSingleton="false"

name="Class" supertypes="a32989FB2023D"

visibility="public vis" xmi.id="a3298A02900FE">

<Model:Namespace.contents>

<Model:Attribute annotation="" isChangeable="true"

isDerived="false" name="isActive"

scope="instance level" type="a33DD6F650276"

visibility="public vis" xmi.id="a33F24B5A0190">

<Model:StructuralFeature.multiplicity>

<Model:MultiplicityType is ordered="false"

is unique="false" lower="1" upper="1"/>

</Model:StructuralFeature.multiplicity>

</Model:Attribute>

</Model:Namespace.contents>

</Model:Class>

Templates A Cheetah template file merges raw text
with Python code and some simple statements (#set,
#if #else, #for). These statements can directly ref-
erence Python objects, which work as parameters for
template expansion. An example of a template is pre-
sented below. It is a simplified version of the one that
generates Java interfaces for MOF classes. An instance
of a MOF Class (the context) is accessible through the
$context variable.
When the template is expanded, Cheetah proceeds as
follows. First, a string containing the names of the
context super-classes, separated by commas, is cre-
ated. Then, variables are replaced by their content:
the qualified name of the package containing the con-
text and the name of the context. Finally, Cheetah
will create two methods for each attribute of the con-
text class, using their names and types as parameters.

#set $parents str = ’, ’.join(map(lambda x:
x.java full name , $context.supertypes))

package $(context.container.java full name);
public interface $(context.java name)

extends $parents str {
/∗∗ Attribute accessors ∗/

#for attrs in $context. attributes ()
public void $(attrs.asSetter)($attrs .type.

java full name $(attrs .asArgument))
throws javax.jmi.reflect .JmiException;

public $(attrs.type.java full name)
$(attrs .asGetter)()
throws javax.jmi.reflect .JmiException;

#end for
}

Figure 2 : Generated environment

Generated Java code An example of the above
template expansion, using the MOF class UmlClass
as context, is presented below. Since this class owns
a single attribute, only two methods are created. It
is important to notice that all the text other than the
Cheetah statements is copied as is, meaning that the
generated code is quite readable.

package org.omg.uml.foundation.core;
public interface UmlClass

extends org.omg.uml.foundation.core.Classifier {
/∗∗ Attribute accessors ∗/
public void setIsActive(java.lang.Boolean a isActive)

throws javax.jmi.reflect .JmiException;
public java.lang.Boolean isActive()

throws javax.jmi.reflect .JmiException;}

4 The generated environment

For each input metamodel, Bosco generates a Java
environment composed of JMI compliant classes, vis-
itors and a XML description used by model manage-
ment classes.

4.1 Java Metadata Interface

JMI is a platform-independent specification for ma-
nipulating metadata using MOF, XML and Java. JMI
is composed of a set of interfaces and a set of code gen-
eration rules that guide the implementation of MOF
specifications in Java. The JMI interfaces stipulate a
common behavior for any MOF specification, while the

generation rules define how language-specific behav-
ior should be implemented. For instance, the meta-
class UmlClass presented in 3.2 should implement
two analog methods allowing to read the attribute
isChangeable. The first one, refGetValue(String),
is generic: it takes the name of an attribute as a
parameter and returns its value. The second one,
isChangeable() is specific: it only returns the value
of the attribute.

The JMI specification involves several MOF con-
cepts (classes, attributes, packages, associations, con-
straints, operations, data types and references) and is
somewhat complex. Consequently, only the part of it
that concerns the implementation of MOF classes will
be explained here. To make it simple, a MOF class
is implemented by two Java classes. The first one is
its underlying representation which implements its at-
tributes, operations and references. The second one
is called a proxy : it acts similarly to Smalltalk meta-
classes: its role is to create instances of the former
and keep a list of them. A similar principle is used for
MOF associations.

4.2 Visitors

While one certainly can use the JMI-compliant code
that represents a metamodel M2 as is, several facilities
are provided to help tool developers.

First, Bosco generates for each language specifica-
tion M2 a XMIHandler that can read a XMI file con-
taining a model M1 and load its representation as the
instances of the generated JMI-compliant classes.

Second, sample visitors are generated for each
metamodel and provide a simple browsing of the run-
time representation (i.e the instances of M2) of the
loaded models M1.

Creating visitors

The expressiveness obtained by only using elements
from the MOF underlying model is often sufficient to
describe how objects are being traversed by visitors.

However, most of the functionality to be provided
by visitors is tied to a specific metamodel M2. The
creation of Bosco add-ins is done easily by extending
the visitors provided in Bosco. This can be done in
multiple ways:

• creating a Java subclass of an existing visitor and
implementing only the visit methods needed

• creating a Cheetah template that will generate a
Java subclass of an existing visitor

The following lines are sufficient to describe the
generic visit method which displays the type of en-
tity for each instance of a loaded model.
public class SimpleVisitorConsole

extends AbstractVisitor {
// For All concrete classes,
#for $element in $model.all contained classes()

public void visit$(element.name)
($(element.java full name) element){
System.out.println

("Visit Entity of Type : $(element.name)");
// in a UML Model, the element has a Name :

System.out.println(((ModelElement)element).
getName());}
super.visit$(element.name);

}// end visit$(element.name)
#end for
}

Common parts of the visit methods can
be factorized in a Visitor template (like the
SimpleVisitorConsole), then differences can be
specified in a Java subclass (for linking to an exter-
nal program in the following example).
public class UMLVisitor

extends AbstractVisitor {
public void visitClass(

org.omg.uml.foundation.core.UmlClass element){
myboscoaddins.ExternalApp.manageClass(element);

}

4.3 Easy model manipulation

Bosco produces a XMI file that lists the metamod-
els generated and the associated handler and visitor
classes.

Manipulating concurrently models from different
metamodels is possible with the MOFRepository,
ModelRepository and ModelM1 classes, that handle
sets of metamodels, specific metamodels and models,
respectively. These classes propose loading and visit-
ing facilities.

The following code searches for the UML1.5 meta-
model JMI representation, loads a XMI model and
visits it.
ConfigRepository metahome=new ConfigRepository

("/home/bosco/config/gen_sources.xml");

ModelRepository umlmodelM2=metahome.getModel("uml");
ModelM1 m1=umlmodelM2.loadInstanceM1

("/home/bosco/examples/test.xml");

// visiting using the gen sources.xml info
umlmodelM2.visitModelWithName(m1,

"SimpleVisitorConsole");

// visiting using a visitor directly
umlmodelM2.visitModelWithObject(m1,

new myboscoaddins.UMLVisitor());

5 Related work

Generating an underlying model from a language
abstract syntax is not a new technique. It is called
meta-modeling and had been used on several aca-
demic and commercial tools, called meta-tools, since
the decade of 80. The first tool that applied this tech-
nique to the OMG standards is probably NSUML [8],
from Novosoft, which has been used in ArgoUML and
in the first releases of Poseidon. The present version
of NSUML implement the JMI and is a direct concur-
rent to MDR [5] from Sun, CIM [10] from Unysis or
ModFact [2].

All these tools differ from each other on some fea-
tures that are included in the generated underlying
model: events, transaction, persistence, etc. The code
generation techniques used by these tools are quite
similar: the code generator is written in java, as a
succession of prints.

Bosco has a different goal: it does not focus on the
quantity of services generated, but on the process of
generation itself. It does not intend to generate a more
complete environment than MDR, for instance, but to
propose a more flexible generation process. The flex-
ibility is reached thanks to Cheetah templates, which
increase the code readability by separating the gener-
ator behavior from the code that will be generated.
In other words, templates eliminate the noise that
masks the generated code: string concatenation, in-
dentation calculation, space insertion, etc. Thus, the

knowledge needed to understand and modify a tem-
plate is reduced to MOF and the few Cheetah control
structures.

6 Conclusion and future work

Implementing a code generation tool is an interest-
ing task that helped us to validate our technological
choices and to observe some difficulties. More pre-
cisely, the choice of Python and Cheetah as genera-
tion engine, as well as Java and JMI as the first imple-
mentation target proved to be correct. The MOF un-
derlying model and the XMI parser became promptly
stable, while the complexity of the JMI showed that
all the needed data was accessible from the templates.
When developing the templates, the problems we en-
countered concerned the implementation of the re-
quired JMI behavior and not the retrieving of data
from the MOF model.

The main difficulties we had came from an unex-
pected source, the OMG specifications. The different
specifications of the UML, for instance, are expressed
in different versions of MOF and are written in differ-
ent versions of XMI, making the goal of implementing
an universal tool that could read any MOF specifi-
cation a very difficult task. This goal will only be
reached when the specification-level part of Bosco will
be partially generated, allowing different versions of
MOF to be handled.

The goal of making Bosco an open tool, allowing
users to easily configure the code generation will only
be demonstrated when users, others than Bosco de-
velopers, will start to write new templates. While the
present templates seem to be very readable, we still
think we can improve their readability and extensi-
bility, using some unexplored Cheetah functionalities,
such as template inheritance and functions.

The code generated by the current release of Bosco
implements most of the JMI specification. It lacks,
however, a complete support for the metamodel (the
language specification), which should be accessible
from the model level. The full JMI implementation
will be available in the following months. The next
release of Bosco will include a OCL parser, which is
under completion, and several facilities for code gener-
ation. The OCL parser will be combined with an eval-
uator, allowing Bosco to verify if the well-formedness
rules of a given language are respected by any model
expressed in this language.

References

[1] ArgoUML. ArgoUML - a modelling
tool for design using UML, 2004.
http://argouml.tigris.org/.

[2] Xavier Blanc, M-P. Gervais, and R. Le Delliou.
The specifications exchange service of an RM-
ODP framework. In 4th International Enter-
prise Distributing Object Computing Conference
(EDOC’00), Germany, sept 2000. IEEE Press.

[3] Ravi Dirckze. Java metadata interface (JMI)
specification. Technical Report JSR 040,
Unisys Corporation and Sun Microsystems,
http://java.sun.com/products/jmi/, June 2002.

[4] Steven Kelly, Kalle Lyytinen, and Matti Rossi:.
Metaedit+: A fully configurable multi-user and
multi-tool CASE and CAME environment. In
CAiSE, pages 1–21, 1996.

[5] Martin Matula. Netbeans metadata repository.
Technical report, Sun Microsystems, 2003.

[6] OMG. Meta Object Facility(MOF) Specification
Version 1.4. Technical report, Object Manage-
ment Group, http://www.omg.org, April 2002.

[7] OMG. The Unified Modeling Language Speci-
fication, version 2.0 rfp. Technical report, Ob-
ject Management Group, http://www.omg.org/,
2004.

[8] Constantine Plotnikov. Novosoft
metadata framework. Available at
http://nsuml.sourceforge.net/.

[9] Tavis Rudd, Mike Orr, and Ian Bicking. Cheetah:
The python-powered template engine. In The
Tenth International Python Conference, Alexan-
dria, Virginia, February 2002.

[10] CIM Development Team. JMI-RI docu-
mentation. Technical report, Unisys Cor-
poration, October 2002. Available at
http://ecommunity.unisys.com/.

[11] Guido van Rossum. Python reference manual.
Technical Report CS-R9525, CWI, May 1995.

